

LOWER EXTREMITIES: Case Presentation

Jennifer Pedley, MS, DC, CCSP, DACBR Chiropractic Radiologist

www.jprad.com

FOOT LEVELERS

Welcome

- New to the team
- Xrays
 - To give best care and solutions>>biomechanical evaluation
 - 'Typical' imaging protocols and guidelines=medical model
 - No one gives biomechanical eval and fingerprint exam
 - AP and lateral radiographs
- Personal Experience
 - Injured athlete>>>>chiropractic and Foot Levelers= increased recovery time
 - Learned early that meds don't work
- My Background
- My lectures: young to mature athlete

• Lower Extremity

• Lumbar Spine

Cervical Spine

Outline

- Toes to the Hip:
 - Foot/toes
 - Ankle
 - Knee
 - Hip/Pelvis
- Patient positioning
- Case studies: Congenital anomalies, degenerative changes, and injuries

Dysfunction

- Start at the base
- Increased stress above and below= chronic pain; increase likelihood of injuries or poor recovery from injuries
 - Poor recovery time

Check It Out

www.footlevelers.com
Under 'Resource Center'

Research articles of the extremities and spine

Before We Get Started

• MRI

• CT

• US

• Xray

MR of Extremities

- Criteria:
 - Extremities- trauma of soft tissue and bone
 - Bone contusion/ stress fracture
 - Ligament/tendon, labrum, meniscus, musculature, vasculature, etc
 - Subacute to chronic head/brain trauma; neurological pathology; mass

MR of Extremities

Contrast

-Arthrography: joint capsule

 Most common joints: knee with prior meniscectomy; labral tear of hip; shoulder.

Example of Arthrography of Knee

Foot

• DP

Medial Oblique

Lateral

DORSOPLANTAR FOOT (DP)

- **FFD** 40-2
- CR 3rd MT base
- Tilt 10° cephalad

DORSOPLANTAR FOOT

Structures Visualized

- Cuboid
- •Calcaneus
- •Talus
- Navicular
- •1st-3rd Cuneiform
- 1st-5th metatarsals
- phalangeal bones

DORSOPLANTAR FOOT - Labeled

MEDIAL OBLIQUE FOOT

- **FFD** 40-2
- CR 3rd MT base
- Tube tilt 10 ° cephalad

MEDIAL OBLIQUE FOOT

Structures Visualized

- •Calcaneus
- Talus
- Navicular
- Cuboid
- 1st-3rd Cuneiforms
- Metatarsals and sesamoids
- Phalanges

MEDIAL OBLIQUE FOOT -Labeled

LATERAL FOOT

• **FFD** 40"

• CR navicular

• Tube tilt none

LATERAL FOOT

Structures Visualized •Calcaneus •Talus •Navicular •Cuboid •Metatarsals

LATERAL FOOT - Labeled

• Foot and ankle pain

Congenital anomalies known

DP Radiograph

www.consultant360.com

Diagnosis

 Brachydactyly- congenital shortened toes/fingers Or Brachymetatarsia (shortened metatarsals)

Treatment

Conservative treatment

- **Foot Levelers**
- Maintain function

• Wrestling barefoot

Foot pain

Donated by Dr. L. Nicholson

Magnified

- Fracture of 4th proximal phalanx
- Bipartite sesamoid, normal variant
 - Check for symptoms: Avascular necrosis; Inflammation
 - If pain, tendon tears; Altered biomechanics of foot
- Mild valgus deformity at the 1st MTP jt

Treatment

Conservative

• Foot Levelers

- Improve biomechanics and recovery time

The Big Point of the Story

- Trauma (Acute or Chronic)
 - Increase recovery and restore function= Foot Levelers

• Dull, achey foot pain for several weeks

Another Stress Fracture

Diagnosis

• 2nd metatarsal Aka March fracture

- Osteopenia, disuse
- Lateral (fibular deviation of sesamoid bones).

Degenerative changes of intertarsal and tarsometatarsal joints.

Stress Fracture

Not seen on xrays, unless callous formation

- Treatment: Conservative care/Rest; Foot Levelers
 - There are signs of altered biomechanics
 - Evaluate above the area

• Athlete twisted his/her foot

Evaluation

 Alignment of 1st metatarsal to 1st cuneiform; and 2nd metatarsal to 2nd cuneiform

Another patient

Patient fell off a horse.

www.feinbergnorthwestern.edu

Normal vs Abnormal

Normal vs Abnormal

Lisfranc Dislocation

- MOI: Twisting with plantar flexion of forefoot or direct blow.
- Swelling and pain over region; unable or difficult to bear weight; dropped arch
- Disruption of the tarsal-metatarsal (TMT) joint with or without associated fracture.

Lisfranc Fx/Dislocation

- Lisfranc ligament is a major stabilizer of the TMT joint, disruption causes midfoot instability
 - Origin: first cuneiform
 - Insertion: medial aspect of the base of the second metatarsal.

X-ray of Lisfranc Joint

- Evaluation
 - Alignment of 1st metatarsal to 1st cuneiform; and 2nd metatarsal to 2nd cueiform

Weight bearing DP view, 10 cephalad tube tilt

• Widening of 1st-2nd metatarsal interspace

Lateral dislocation of the metatarsals
 Severe Lisfranc Injury

Treatment Lisfranc

- Rest; boot>>>6-8 weeks or more
 - Laser, etc
 - Foot Levelers, once weightbearing
- Advanced Imaging
 - MRI- ligament and bone marrow edema
 - CT-fracture fragments or dislocation
- Surgical
 - Unstable- percutaneous wire fixation
 - If displaced, open reduction, internal fixation with screws.

MRI of TMT ligament

www.radsource.us

• Heel pain

Lateral Radiograph

www.paincare.org

Diagnosis

 Enthesophyte or traction osteophyte formation at the calcaneal attachment site to the plantar aponeurosis/ fascia= Heel Spur.

Lateral Radiograph

Another Example

Another Heel Spur

 Enthesophyte or traction osteophyte at the calcaneal attachment site to the Achilles Tendon.

Heel Spur

 Cause: repetitive stress, obesity, altered biomechanics, hereditary, previous trauma, inflammatory arthritis, etc.

 Complication: Inflammation or tearing of the plantar fascia or Achilles Tendon>>>plantar fasciitis or Achilles Tendinitis

Treatment

• Minimize stress to region

Modalities

Foot Levelers

Plantar fasciitis & Achilles Tendinitis

Advanced imaging: MR

Normal MR of Achilles & Plantar Fascia

www.aafp.org

Normal Achilles

Posterior impingement

Coalition

• Foot pain (2 different patients)

Normal Anterior Calcaneus

Types of Coalition

- Talocalcaneal
 - Talar beak sign due to impaired subtalar movement
 - Involves the middle facet
- Calcaneonavicular

- Anterior process of the calcaneus

Talocalcaneal Coalition

- Talar beak
- Heel Spur
- Osteopenia

Calcaneonavicular

- Bilateral
- Pes
 planus

Complications

- Pain & Altered biomechanics
- Tarsal tunnel syndrome

 Posterior tibial nerve through the flexor retinaculum, inside portion of ankle
- Peroneal tendon spasm (peroneal brevis, longus and tertius tendons)- lateral tendons

Posterior tibial nerve

Tarsal Tunnel Syndrome (TTS)

Complications

- Pes planus
 - Causing outward tilting of the calcaneus, impingement on posterior tibial nerve
- Secondary osteoarthritis

Treatment

Difficult to treat; Surgical vs.
 Nonsurgical

- Cannot change the coalition

Foot Levelers

- Stability and maintain arch
- Decrease impingement to nerve

3-D Scanner: Specific to your patient; Validates treatment

Ankle

Ankle Views

- AP
- Medial Oblique
 Optional: Lateral oblique
- Lateral

AP View

• **FFD** 40"

 CR between the malleoli

• Tube tilt none

AP ANKLE

Structures Visualized

- •Talar Dome
- •Navicular
- •Medial, Lateral and Posterior Malleoli
- •Tibial shaft
- •Fibular Shaft
- •Tibial Plafond

AP ANKLE - Labeled

MEDIAL OBLIQUE ANKLE

- **FFD** 40"
- CR between
 malleoli
- Tube tilt none

MEDIAL OBLIQUE ANKLE

Structures Visualized

•Talar Dome

- •Medial, Lateral and Posterior Malleoli
- Tibial Plafond
- Navicular
- Calcaneus
- •Tibia and Fibula

MEDIAL OBLIQUE ANKLE -Labeled

LATERAL ANKLE

- **FFD** 40"
- CR medial malleolus

• Tube tilt none

LATERAL ANKLE

Structures Visualized

- •Tibia
- •Fibula
- •Talus
- Calcaneus
- •Navicular
- Cuboid

LATERAL ANKLE -Labeled

 Long distance runner with foot and ankle pain

Lateral Ankle

Findings

 Linear zone of sclerosis

 Soft tissue swelling, Kager's fat pad

What's Next

Advanced imaging

Stress Fracture of the Calcaneus

- Linear sclerosis or no xray findings
- MRI
 - Bone marrow edema, high T2 and STIR signal intensity

Normal MR of Calcaneus

Treatment

Rest>>>Non-weightbearing activity

• Chiropractic & FL (Foot Levelers)

Hx: 23 yom, soccer player twisted his ankle

Diagnosed with high ankle sprain.

AP and Lateral Ankle

AP and Lateral Tib/Fib

Masseoneuve Fracture

- Fracture of the medial malleolus extending posteriorly & Fracture of proximal fibula
- Associated with disruption of interosseous membrane & tibiofibular syndesmosis; deltoid ligament (medial); joint widening

Treatment

- Closed reduction (set/reduce) & cast
- Chiropractic & when weightbearing, Foot Levelers

Hx: 32 yom playing tennis and felt a sharp pain in the back of the lower leg.

Lateral View

Findings

- Arteriosclerosis of the posterior and plantar vessels
- Indistinct Achilles tendon margins with soft tissue swelling
- Painful with dorsiflexion (mimicking high arch)

Achilles tendon rupture

 S/S: Indentation of tendon, weakness or loss of motion

• MRI and/or diagnostic ultrasound

Normal MRI vs abnormal

www.faoj.org

Rupture of Achilles Tendon

• Tx: Conservative therapy or surgical

 Conservative: non-weight bearing with cast for 6 weeks; followed by short walking cast for 2 weeks

• Rehab for 6 months; heel lift

Achilles Tendon Injury

- Conservative tx restores strength 49-84%
- Surgical tx restores strength 71-101%

- Conservative tx restores function 75-80%
- Surgical tx restores function 75-90%

After Surgery

- They need your help!
- Reduced motion of ankle and foot, hypertonic musculature, weakness, etc.
- Scar tissue
- Altered biomechanics
 - Treatment: Foot Levelers, Soft tissue/myofascial, adjust, laser, kinesiotape, etc.

Knee

- AP
- Tunnel
- Lateral
- •Tangential (Sunrise)

- CR
 patellar apex
- Tube tilt 5 ° cephalad
- Standing; or if PA, 15 degree cephalad tilt.

AP KNEE

Structures Visualized

Patella

- •Femur
- Tibia
- •Fibula
- •Condyles of the Tibia and Femur
- Adductor tubercle
- •Joint Space

AP KNEE - Labeled

LATERAL KNEE

- FFD
- CR

- 40" joint line
- Tube tilt none

 Knee flexion of 90-120 degrees

LATERAL KNEE

Structures Visualized

- •Patella
- •Femur
- •Tibia
- •Fibula
- Infra & Supra Patellar Fat Pads

LATERAL KNEE -Labeled

Tunnel View

• FFD 31 (corrected 40-9)

- CR Joint line
- Tilt: 45 degree caudad
- Measure from midhamstring to anterior knee (not just through popliteal fossa)

TUNNEL VIEW (KNEE)

Structures Visualized Intercondylar notch Femoral condyles Intercondyar eminences Tibia Fibula

Sunrise/ Tangential View

- **FFD** 40"
- Film size 8x10

• CR PF joint

• Tilt varies

TANGENTIAL (SUNRISE) VIEW

Structures Visualized

- •Medial and Lateral Patellofemoral Joint
- •Patella
- •Patellar facets
- Trochlear groove
- •Femoral Condyles

• Boy fell off his bike and has knee pain

AP and Sunrise View

NORMAL OR ABNORMAL?

www.wikiradiography.com

Bipartite Patella

Normal variant, superolateral aspect of the patella

– Any other location of the patella= fracture

• Smooth margins

• MC bilateral

Bipartite Patella

• If symptomatic, MRI

• 15 yof with knee pain

AP and PA Tunnel View

Recumbent

Sunrise (patellofemoral) View

Patellar Fracture-Dislocation

• MOI- twisting; direct blow

- Advanced Imaging
 - Medial patellar retinaculum
 - Bone contusion/ bone marrow edema along medial patella and lateral femoral condyle

Treatment

- Surgical
- Chiropractic & Foot Levelers
 - Evaluate above and below the area
 - Biomechanics & Function

 15 year old female with chronic knee pain; active in sports

Tangential Radiograph

What is wrong with the trochlea groove?

Shallow Trochlea Groove

www.radsource.us

Normal Patellofemoral Joint

www.MRImaster.com

Comparison

Congenital Shallow Trochlea

- Complications
 - Early degenerative changes; chondromalacia
 - Lateral dislocations
 - Tear of the medial patellofemoral ligaments/retinaculum
 - Weakness or overactive Quadriceps

Follow-up

- Treatment
 - Surgical: secondary and recurrent dislocations.
 - Conservative: Chiropractic & FL (Foot Levelers)>>altered biomechanics; and need to evaluate above and below area
- Xray/Clinical: May see lateral displacement or drift of the patella

Chronic knee pain

Lateral Radiograph

Lack of knee flexion, patient positioning

www.radiopaedia.org

Patella Alta

- Congenital anomaly (if no disruption of patellar tendon)
 - Increased length of the patellar tendon
- Complication
 - Early degenerative changes; chronic pain and joint effusion
 - Possible dislocation of patella, not in the trochlear groove
 - Patellar tendinitis

- Insall Salvati Ratio= divide length of tendon (LT) by length of patella (LP)
 - with 30 degree
 knee flexion
- Greater than 1.2

Treatment

 Chiropractic & FL to provide stability and balance.

Hx: Twisted knee

AP and Lateral View

Findings

 Radiolucency along the lateral aspect of the medial femoral condyle, near tunnel.

Coronal T2 Weighted

Osteochondral Dissecans

- Age: 10-20
- Define: Necrosis of bone followed by reossification and healing
- Flap fragment with defect of the articular cartilage and fluid on MRI>>>unstable
 surgical

OCD

- MOI: shearing and rotary forces
- Tx:
 - Intact cartilage: Walking with crutches, beneficial for the reconstitution of cartilage.
 - And Chiropractic and FL
 - Fragment/Defect in Cartilage: surgical
 - Joint locking

• 12 yom limping with knee pain

Findings

- Soft tissue effusion of Hoffa's and suprapatellar bursa
- Thickening of the patellar tendon
- Fragmentation and displacement tibial tuberosity
- Knee positioning &/or HPT quads= patella alta.

Osgood-Schlatter's Disease

Traction apophysitis: Overuse injury age 9-14.

- Repetitive strain from running, basketball, or other repetitive sports leads to <u>chronic</u> <u>avulsion of the apophysis of the tibial</u> <u>tubercle</u>.
 - Callous formation with prominent tender tibial tuberosity

Osgood-Schlatter's

- S/S: Tenderness; tight quads; patella alta
- 2-6 months of conservative treatment; eliminate stressful activity
 - No jumping, running
 - Evaluate above and below the knee
 - Foot Levelers, laser, etc.
- Severe cases= tendon tear repair, surgical excision of ossicle.

Treatment

Chiropractic & FL

Osgood-Schlatter's

Chronic knee pain; previous trauma

Findings

- Post-traumatic calcification along the medial femoral condyle= Pellegrini Stieda syndrome
- Malunion of proximal fibula from previous fracture.

Pellegrini Stieda Syndrome

- Avulsion (chronic) of the medial collateral ligament
- Associated with ACL and meniscal tears
- Altered biomechanics, etc.
- MRI

Example: Medial meniscal Tear

 Tear PH & body of medial meniscus

Follow-up & Treatment

- Previous trauma with chronic tears
 - MRI if necessary
 - Orthopedic Surgeon

- Treatment
 - Evaluate above and below the knee
 - Chiropractic & FL>>>old injuries=altered biomechanics

Long jumper with knee pain and cannot extend the knee

www.feinberg.northwestern.edu

Findings

Soft tissue swelling

Cephalad migration of patella

Calcific densities: avulsion fragment

Avulsion of the Patellar Tendon

Rupture of the patellar tendon

• MRI

Orthopedic referral

Tears of Patellar Tendon

Post Surgical Treatment

• They need You! They are a mess!

Evaluate above and below the knee

Chiropractic & FL

Hip & Pelvis

Hip & Pelvis Views

- AP Pelvis
- AP spot view of hip
- Lateral Frog-leg view of hip

Radiographs of the Hip and Pelvis

- 3 Projections
 - AP view of the pelvis
 - Bilateral internal rotation of the femur 20 degrees
 - AP and lateral frog-leg spot views
 - AP- internally rotated femur 20 degrees.

www.raddaily.com

AP Pelvis

• **FFD** 40"

- CR top light
 at iliac crest
- Hips internally rotated 20°

AP PELVIS

Structures Visualized

- •SI Joints
- •Hip Joints
- Pubic Symphysis
- •Greater and Lesser Trochanters
- Obturator Foramen
- •Femoral Heads

AP PELVIS - Labeled

AP Spot View of the Hip

- **FFD** 40"
- CR Femoral pulse
- Femur internally rotated 20°

AP SPOT HIP

- **Structures Visualized**
- •Femoral Head
- •Femoral Neck
- •Greater and Lesser Trochanter
- •Femoral Shaft
- Kohler's Teardrop
- •Pubic Rami
- •Iliac Fossa

LATERAL FROG-LEG VIEW • FFD 40"

CR Femoral pulse

FROG-LEG (HIP)

Structures Visualized

- •Femoral head
- •Femoral Neck
- •Hip Joint space
- Kohler's Teardrop
- •Pubic Rami
- Obturator Foramen
- •Femoral Shaft

Lines of Interest

• Iliofemoral, Klein's, and Shenton's line

• Iliopectineal line and ilioischial line

Line of Shenton and Klein

Ilioischial Line If abnormal, be concerned for <u>posterior column fracture</u> (the stronger of the two columns, extends posterior to acetabulum and includes sacrum, SI joints, and

Iliopubic (Iliopectineal) Line

If abnormal, be concerned for anterior column fracture (the weaker of the two columns, extends anterior to acetabulum and includes pubic rami, symphysis and anterior ilium)

Lines of Interest

 Trabecular pattern

Journal of Biomedical & Pharmaceutical Engineering 1:1 (2007) 45-51

Capsular fat pads- iliopsoas, gluteus, and obturator internus

Foot Levelers

You Might Expect Results This Dramatic In Weeks

rays courtesy of Terry R. Yochum, DC, DACBR, FACCR

Chronic groin pain

AP Pelvis and Right Frogleg Lateral

Different Patient

Femoroacetabular Impingement

- FAI, cam type with secondary degenerative joint disease
 - Osseous bump at the lateral aspect of the head-neck junction of the femur

Femoroacetabular Impingement

 Lateral osseous bump along the femoral headneck junction= cam

- "Pistol grip" deformity

- Osseous extension of the lateral aspect of the acetabulum resulting in <u>overcoverage</u> of the femoral head= pincer
- Previously diagnosed as degenerative joint disease or congenital dysplasia

Radiographic Findings

Associations:

- Os acetabuli
- Herniation pits along the lateral aspect of the femoral head-neck junction

Clinical Findings

• Age: 20-40

- Pincer type is common of females

- Chief Complaint: groin pain with hip rotation in the sitting position or during/after sports; or trochanteric pain radiating to the lateral thigh.
 - Decreased range of motion: flexion and internal rotation

Complications of FAI

 Decreased joint clearance between femoral neck and acetabulum

 Possible premature degeneration, and tears in the labrum and adjacent articular cartilage

Filigenzi F and Bredella M. MR imaging of Femoroacetabular Impingement. Applied Radiology, April 2008, 12-19.

Tannast M, et al. Femoroacetabular **Impingment**: Radiographic Diagnosis-What The Radiologist Should Know. AJR:188;1540-1552, June 2007.

Follow-up

• MRI with arthrography: evaluate for labral tears, and articular cartilage damage

- Orthopedic surgeon consultation
 - Osseous resection
 - Labral repair/refixation with suture anchors or labral debridement

Larson C and Giveans M. Arthroscopic Management of Femoroacetabular Impingement: Early Outcome Measures. J of Arthroscopic and Related Surgery, May 2008, 24 (5); 540-546.

Treatment

Chiropractic & FL

Altered biomechanics; Muscle imbalances

- Evaluate above and below region

Hx: 13 yom complains of knee pain

Recumbent Bilateral Lateral Frog-leg View

Radiographic Findings

 Medial migration of the right femoral epiphysis

- Decrease in femoral epiphyseal height
- Positive Klein's Line

Slipped Capital Femoral Epiphysis

- Age: 10-17 yoa of boys; 8-15 yoa of girls
 - Left hip most commonly affected
- Causes
 - Overweight
 - New activity- strenuous exercise
 - Growth spurt
 - Trauma

Resnick D. Diagnosis of Bone and Joint Disorders, 4th ed. 2002; 2729-34.

SCFE

Complications

- Severe varus deformity and foreshortening
- Osteonecrosis
- DJD; ALTERED BIOMECHANICS

Follow-up

- If surgical>>>post surgical chiropractic care & FL
- Orthopedic surgeon consultation
 - Pin the femoral epiphysis at the current location

Hx: 18 yof athlete complains of hip pain; cross country runner

AP Pelvis

Coronal T1 & T2 Weighted

Stress Fracture

Normal density with abnormal stress

Bone scan and MRI- positive

Non-weight bearing activity

Treatment

- "Rest"
- Chiropractic
- Foot Levelers

Hx: 33 yom suffers from hip pain after 30 mile run

AP Pelvis

Magnified

What is next?

Advanced Imaging

Coronal T1 & T2 Weighted

Stress Fracture

Quality of bone is normal with abnormal stress.

 29 year old male with hip pain

OLD LCP

- Flattened deformity of the femoral epiphysis (coxa plana)= mushroom cap
- Widened and shortened femoral neck
- Flattened acetabular margin
- Secondary osteoarthritis
- Intra-articular osseous bodies

Resnick D, MD. Diagnosis of Bone and Joint Disorders,4th ed. 2002

60 YOM: Old LCP

Resnick D, MD. Diagnosis of Bone and Joint Disorders,4th ed. 2002

AP Pelvis

Radiographic Findings

- Smaller epiphysis
 - Collapse/flattening of the left femoral epiphysis
- Multiple lucencies within the epiphysis and proximal metaphysis
- Widened femoral neck
- Medial joint space widening
- Smaller obturator foramen

ACR Learning File

Legg-Calve-Perthes

- Age: 3-12 yoa; mc 4-8 yoa & male
- MC cause of LCP is idiopathic

Clinical Associations

- Limp and groin pain; pain may travel to the anteromedial aspect of the knee
- Prognosis is better at younger age of onset; less than 6 yoa.
- Bilateral 10%

LCP

Old LCP—early degenerative changes, eventually hip replacement

-altered biomechanics above and below the hip;

-Chiropractic and Foot Levelers.

Follow-up for early LCP

- MRI bilateral hips- for early marrow changes
 - Anterosuperior portion of the femoral head

Hip Dysplasia

Treatment/Outcome in LCP

- Surgery; Bracing to provide traction; Rest
- Foot Levelers age of 10-12.
- Reconstitution
 - Less than 50% involvement of the femoral epiphysis= better prognosis

Fracture of left femur

Surgical hardware

Altered biomechanics/compensatory

• Pelvic unleveling/ altered femoral heights

 Degenerative changes of lumbar spine; Postural alterations

Follow-up/Treatment

 Check hardware for loosening; healing of fracture

Chiropractic & Foot Levelers

 Improve recovery time

References

- Cornuelle A; Gronefeld D. Radiographic Anatomy & Positioning, Integrated Approach. 1998
- Yochum T, Rowe L. Essentials of Skeletal Radiology, 3rd ed. Baltimore: Williams & Wilkins, 2005.
- Resnick D. Diagnosis of Bone and Joint Disorders, 4th ed. 2002.
- Prentice W. Arnheim's Principles of Athletic Training, 13 ed. 2009
- Hyde T; Gengenbach M. Conservative Management of Sports Injuries. 2007
- Stoller D, et al. Diagnostic Imaging, Orthopedics. 2004
- Juhl J, et al. Essentials of Radiologic Imaging, 6th ed. 1993.
- Stoller D. MRI in Orthopedics & Sports Medicine, 3rd ed; 2007
- Filigenzi F and Bredella M. MR imaging of Femoroacetabular Impingement. Applied Radiology, April 2008, 12-19.
- Tannast M, et al. Femoroacetabular Impingement: Radiographic Diagnosis-What The Radiologist Should Know. AJR:188;1540-1552, June 2007.
- Campos J, et al. Pathogenesis of the Segond Fracture: Anatomic and MR Imaing Evidence of an Iliotibial Tract or Anterior Oblique Band Avulsion. Radiology May 2001; 219, 381-386.
- Arnaiz J, et al. Imaging Findings of Lower Limb Apophysitis. AJR March 2011; 196, W316-25.
- Strub W. Signs in Imaging: The Arcuate Sign. Radiology 2007; 244: 620-621.
- Theodorou, et al. Radiology. March 2003; 226, 857-865.
- AAFP.org. Fractures of Proximal 5th Metatarsal. 59 (9),May 1, 1999.
- Timpone V, et al. Intermetatarsal Fat Pad Sign: Radiographic Aid to Diagnosis of Occult Tarsometatarsal Joint Injuries. AJR January 2009; 192 (1), W36-37.
- Sports Orthopaedics and Traumatology Sport-Orthopädie Risk factors for patellar dislocations: A narrative review; Volume 32, Issue 2, June 2016, Pages 139-147
- Arthritis Care Res (Hoboken). The association between patella alta and the prevalence and worsening of structural features of patellofemoral joint osteoarthritis: The Multicenter Osteoarthritis Study; 2010 September; 62(9): 1258–1265. doi:10.1002/acr.20214.

THANK YOU

Jennifer Pedley, MS, DC, CCSP, DACBR Chiropractic Radiologist

www.jprad.com

