Essentials of Lumbar Spine Rehab Flexion vs. Extension vs. Neutral

Donald C. DeFabio, DC, DACBSP, DACRB, DABCO
Chiropractic Orthopedist & Sports Physician
908-771-0220

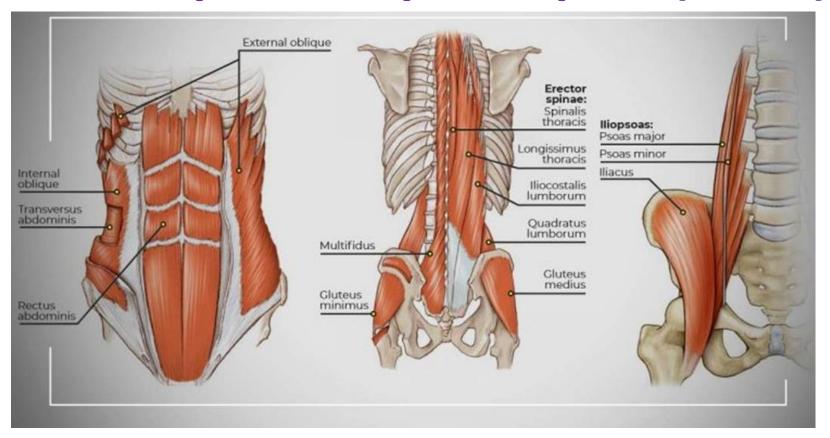
www.DeFabioChiropractic.com

Credentials

- NEHS, DC: private practice since 1985
- Board Certified Chiropractic Orthopedics, Rehab & Sports
 - Plus: ART, Graston, MUA, SFMA, CES, PES, FM
- 2023 ACA Rehab Council Doctor of the Year
- Former Chiropractic Doctor for Drew University & RU T&F
- Classifier IWAS 1996 -2017
- Relevant Rehab Seminars: The DeFabio Difference
- Chief of Chiropractic Services
 - DeFabio Spine & Sports Rehab, LLC
- 41+K subscribers on YouTube

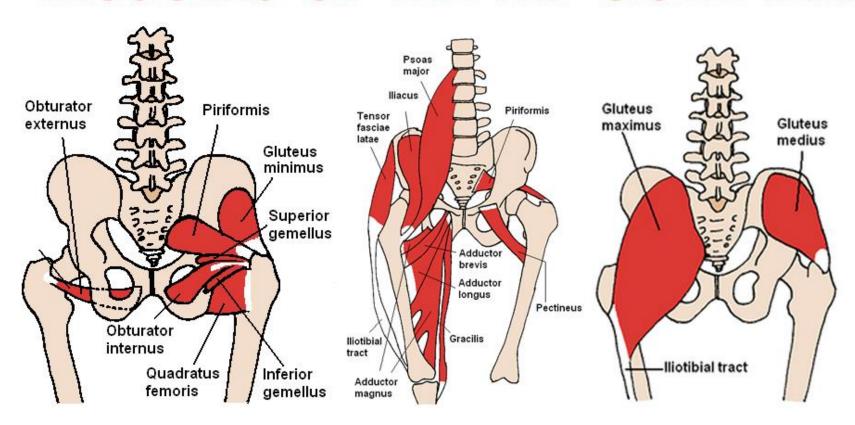
Disclosures

- Speaker's Bureau NCMIC
- Owner, Relevant Rehab Courses
- Consultant Winback & StoPain

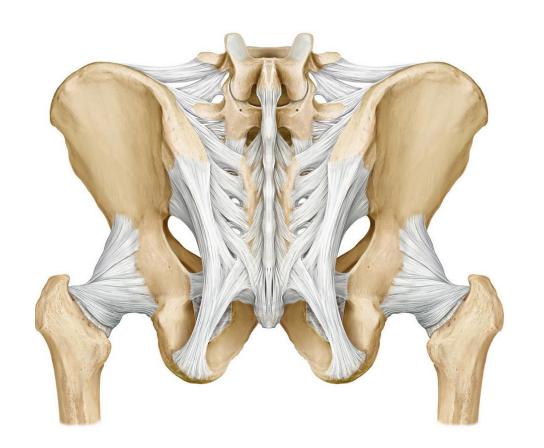


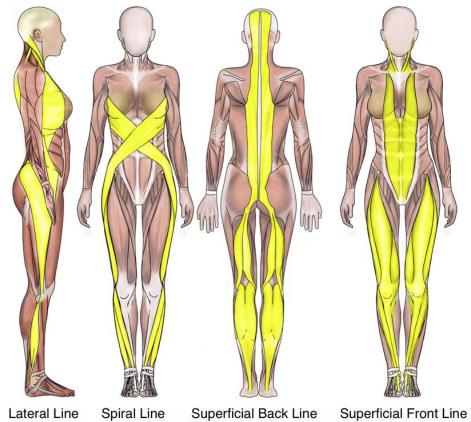
Learning Objectives

- Review relevant LPHC anatomy
- Create a lumbopelvic hip complex exam flow chart
- Understand core stability mechanisms
- Review lumbar disc kinematics
- Learn exercise principles for the lumbar spine for all phase of care
- Contrast Flexion, Extension & Neutral Spine biased protocols



Relevant Anatomy Lumbopelvic Hip Complex (LPHC)

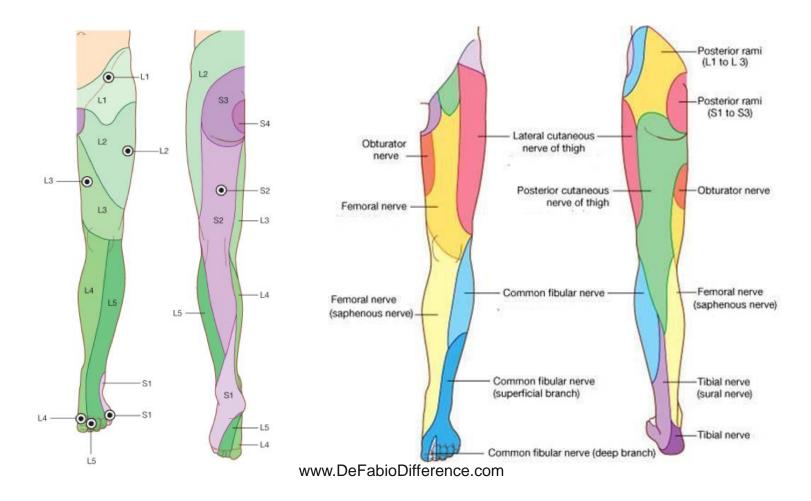




MUSCLES OF THE HIP COMPLEX

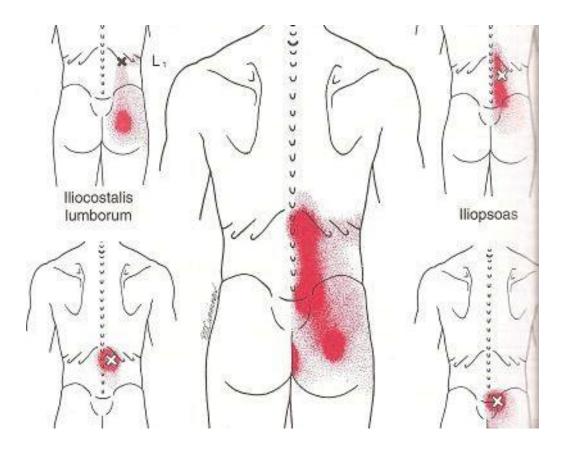
Exam Flow Chart

- Standard Examination
- Static Assessment
 - Postural/Chiropractic Exam
- Movement Patterns
- Dynamic Assessment

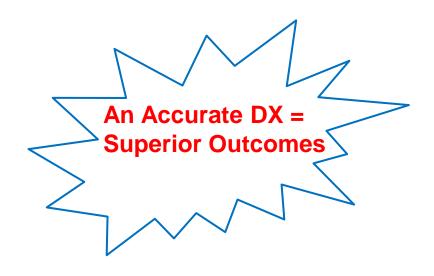

Lumbar Radiculopathy

Clinical Features of Herniated Lumbar Nucleus Pulposus

Level of Herniation	Pain	Numbness	Weakness	Atrophy	Reflexes
L3 L4 L4 L5 S L3-4 disc; 4th lumbar nerve root	Lower back, hip, posterolateral thigh, anterior leg	Anteromedial thigh and knee	Quadriceps	Quadriceps	Knee jerk diminished
L5 L4-5 disc; 5th lumbar nerve root	Over sacro- iliac joint, hip, lateral thigh and leg	Lateral leg, web of great toe	Dorsifexion of great toe and foot; difficulty walking on heels; foot drop may occur	Minor	Changes uncommon absent or diminished posterior tibial reflex
L5 S1 L5-S1 disc; 1st sacral nerve root	Over sacro- iliac joint, hip, postero- lateral thigh and leg to heel	Back of calf; lateral heel, foot and toe	Plantar flexion of foot and great toe may be affected; difficulty walking on toes	Gastrocnemius and soleus	Ankle jerk diminished or absent
L5 S1 S2 Massive S3 midline protrusion Coccygeal	Lower back, thighs, legs, and/or perineum depending on level of lesion; may be bilateral	Thighs, legs, feet, and/or perineum; variable; may be bilateral	Variable paralysis or paresis of legs and/or bowel and bladder inconti- nence	May be extensive	Ankle jerk diminished or absent



LE Sensation Review


Trigger Points

A Thorough Examination

- ROM
- Nerve Traction Signs
- Nerve Compression
- Disc?
- Muscular?
- Facet?
- SI / Pelvis?
- Hip?
- Atlas?
- Underlying pathology?

Core Stability

Stabilization vs. Movement

Stabilization

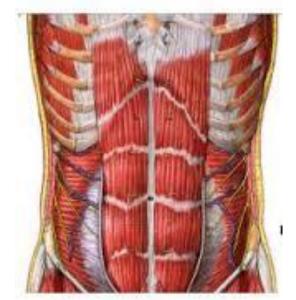
- A "local" muscle system
 - Creates segmental spinal stabilization
- Provides little joint motion
- Creates a stable foundation for movement
- Prone to weakness
- Inner Unit

Movement

- A "global" muscle system
 - Creates movement, power speed
- Provides regional stabilization
- Prime movers
- Prone to tightness
- Outer Unit

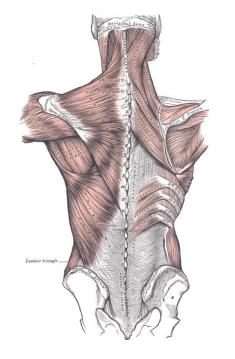
Core Musculature

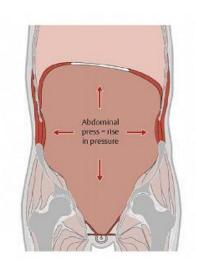
Stabilization

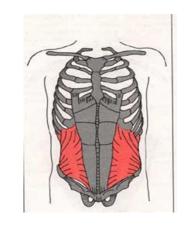

- TA
- Internal Oblique
- Multifidi
- Lumbar Transversospinalis
- Pelvic Floor
- Diaphragm
- Glut Med*
- Deep Erector Spinae*
- Longus Coli/Capitus*
- Deep Cervical Flexors*

Movement

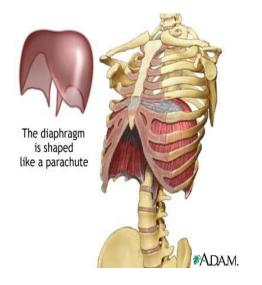
- Rectus Abdominus
- External Oblique
- Erector Spinae
- Quadratus Lumborum
- Adductors
- Quadriceps
- Hamstrings
- Glut Max
- Psoas*
- Latissimus Dorsi*
- Scalenes*

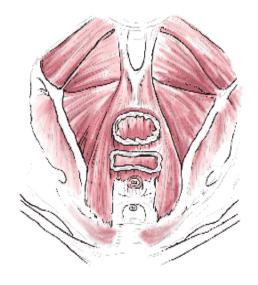

Mechanisms of Core Stability


- Thoracolumbar Stabilization
- Intra-abdominal Pressure
- Hydraulic Amplifier



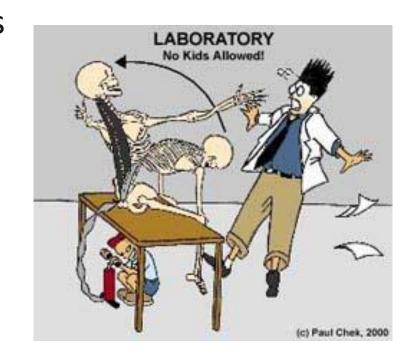
Thoracolumbar Stabilization





Reduces translational and rotational stress at the LS junction

Intra-abdominal Pressure Mechanism



Reduces compression at the LS junction

Hydraulic Amplifier Mechanism

- After the relaxation response in the LS, to return erect, load sifting occurs into the non-contractile LPHC elements and into the eccentrically contracting gluts and hamstrings
- This energy is stored in these tissues & is converted to kinetic energy with lumbar extension
- Requires an efficient TL fascia

Bracing

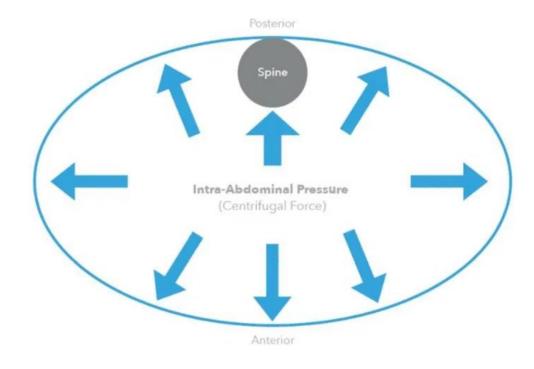


Figure 1

Pictures by Prague School of Rehabilitation

Figure 2

Abdominal Hollowing vs. Bracing vs. Natural Strategy

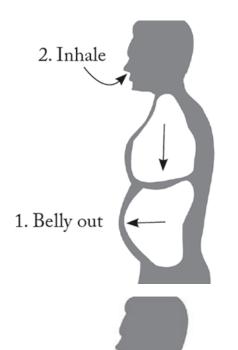
- Abdominal hollowing was the most ineffective & did not increase stability.
- Abdominal bracing did improve stability but increases spinal compression.

The Myth of Core Stability, Lederman E, JBMT (2010) 14,84-98

Abdominal Hollowing w/ Pelvic Tilt

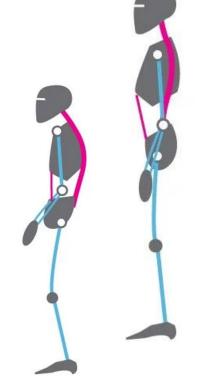
- EMG shows increased stiffness is significantly less compared to neutral bracing due to decreased activation of other abdominal wall muscles
- Causes inhibition of the erector spinae
- Makes it beneficial in the early stages of lumbar spine rehabilitation since the erectors are often shortened & weak

Integrating abdominal hollowing into the prone plank exercise enhances overall abdominal activity, particularly in both obliques


Influence of Abdominal Hollowing Maneuver on the Core Musculature Activation during the Prone Plank Exercise, García-Jaén M, J Int Environ Res Public Health 2020 Oct

The Take Home

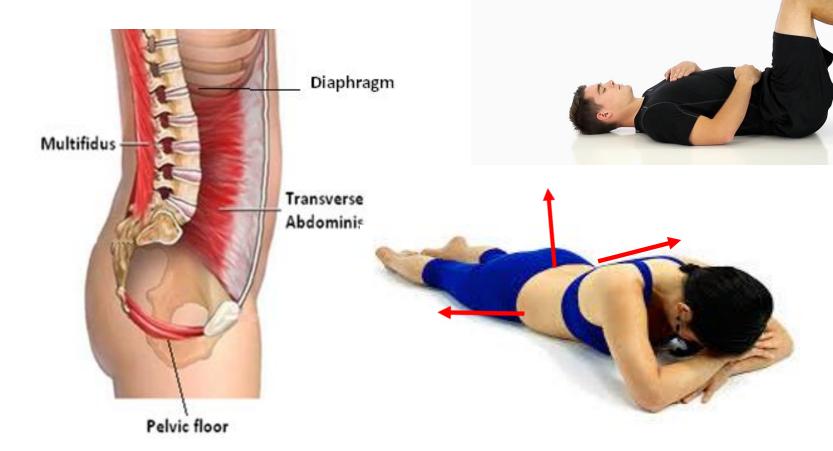
- Abdominal hollowing can provide relief, kinesthetic awareness, motor control education, & early activation of the TA & multifidi in the acute LBP patient
 - Once weight bearing postures begin (ADL / rehab) neutral spine bracing is preferred
- Neutral spine is preferred to enhance multiplanar stability & functional movements
- Abdominal hollowing & neutral spine bracing allow for local stability to prepare for functional, comprehensive spinal stability



2. Exhale

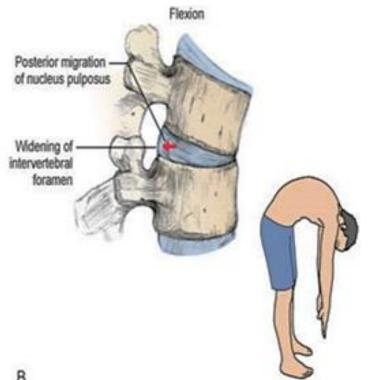
1. Belly in

Breathing


- Abdominal breathing strengthens deep core muscles
- Learn to keep the chest quiet
- "Bellows effect"
- Oxygenates tissues?

Abd Breathing

Nucleus pulposus Nucleus pulposus Anterior motion Nucleus pulposus $u_{11}u$ Posterior motion


Disc Review

www.DeFabioDIfference.co

Flexion Principles

Traditionally the standard for acute LBP and LS disc syndromes

- Often a position of relief
- Distracts apophyseal joints
- Relaxes erector spinae
 - Noted on EMG
- Opens the IVF
 - Cox, flexion-distraction
 - Williams Exercises
 - Logan Basic & SOT

Williams Exercises

- Originally designed for chronic low back pain patients in 1930's
 - Men younger than 50 yo
 - Women younger than 40 yo
 - W/moderate to severe lumbar lordosis
 - W/diminished disc space at L1-S1 on XR
- Intent: to improve lumbar flexion, avoid surgery, & strengthen the gluts and abdominals
- Perfect in the acute and sub-acute phase
- Long term: maintains ROM

D. Seated reach to toes to stretch the hamstrings and erector

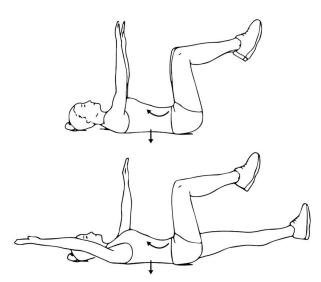
E. Forward crouch to stretch the iliofemoral ligament

F. Seated flexion

A. Pelvic tilt

B. Sit-up in knee flexion

Williams **Exercises**



Strength and Stability for Flexion Bias: Dead Bug in *FLEXION*

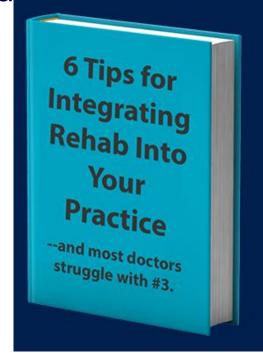
- Supine Hooklying
- Lumbar Flexion
- Breathe

Dead Bug Position


- Supine, arms only
- Supine, legs only
- Alternate arms and legs
- Add resistance
- Add unstable surface

Flexion Exercises

- Acute LBP
 - W/ or w/o sciatica
- Lumbar DJD / Spondylosis
- Spinal Stenosis
- Spondylolisthesis
- Facet imbrication (secondary to hyperlordosis)
- Janda's Lower Crossed Syndrome
- Disc syndromes (Note: MDT extension protocols are well referenced for lumbar HNP treatment)

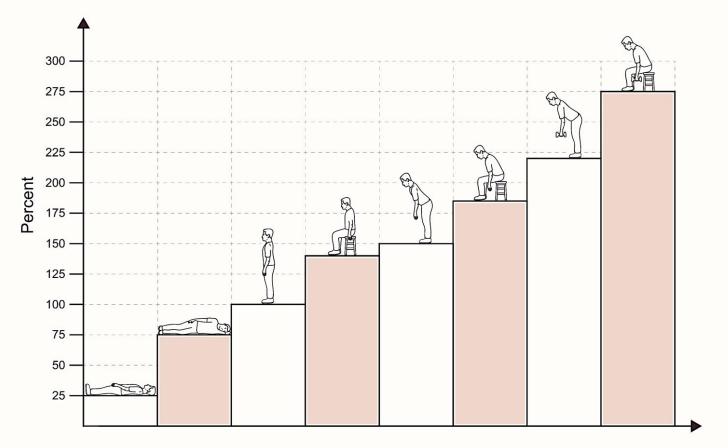


TAKE A BREAK!

- Don DeFabio, DC, DACBSP, DACRB, DABCO
- Rehab Tips & Patient Tear Sheets

■ GOOGLE: DeFabio Difference & leave a review

- Relevant Rehab Seminars
- CCSP to Rehab Diplomate Program
- One on One Consulting
- DeFabioDifference.com
 - Download Free e-book!



Neutral Spine: The Rationale

- Lumbar discs are at maximal load at 30° of flexion
- Combined with compressive loading and/or repetitive insult leads to disc failure
- From exercises in lumbar flexion, (crunches and situps), exercises done improperly, (seated rows, bent over rows, deadlifts, back squats), or ADL's in flexion, (sitting at a desk)

Repeated lumbar flexion creates abnormal arthrokinematics and discogenic changes

Relative Disc Pressures www.DeFabioDifference.com

Spinal Compression Loads w/ Exercise

Exercise	Compression Load		
Sit-up (bent knee)	3,300N (730lb)		
Sit-up (straight leg)	3,506		
Curl-up feet anchored	2,009		
Curl-up feet free	1,991		
Quarter sit-up	2,392		
Bent leg raise	1,767		
Hanging straight leg	2,805		
Hanging bent leg	3,313		
Isometric side bridge	2,585		
Roman chair extension	4,000		
Back extension (arms and leg	s) 6,000		
Bird dog	2,000		

Table sourced from McGill S, Low Back Disorders: Evidence Based Prevention & Rehabilitation, Human Kinetics, 2002.

McGill

- Maintain neutral spine
- Protects the disc
- Creates efficient movement patterns

www.DeFabioDifference.com

McGill's "Top 3"

- Curl-up
- Side plank
- Quadruped

Goal: Re-groove movement pattern w/ spinal stiffness in "neutral"

McGill Curl –Up Progression

Elevate head and shoulders 1", w/o CS flexion, passive neutral lumbar spine

Actively maintain LS neutral and lift arms 1"

towards feet

Cross arms on the chest

- Place hands behind head
- Add pre-brace
- Add unstable surface
- Avoid lumbar flexion

Side Plank Progression

- Three-point position
- 3 point with bridge
- Split stance: stiff arm
- Split stance: bent arm
- Split stance w/ unstable surface
- Single leg*

Quadruped Progression

Bracing: Neutral Spine vs. Flexion

- Neutral Spine
- Increase endurance to decrease arthrokinematic breakdown

- Flexion
- Emphasizes TL fascia mechanism
- Engages lower abdominals & Opens Facets

Mechanical Diagnosis Therapy.....MDT

- Developed in the 1950's by Robin McKenzie, PT
- Has become synonymous with spinal extension exercises
- Uses a classification system for diagnosis and treatment
- Emphasizes centralization of spinal and radicular pain
- Uses targeted repetitive HEP approximately 10X per day
- Caveat: giving the 'wrong' direction of exercises can lead to poorer outcomes.

MDT Classifications

Postural

- Soft tissue deformation from prolonged postural stresses
- Repeated movements should not affect symptoms
- Relief occurs immediately following correction of abnormal posture

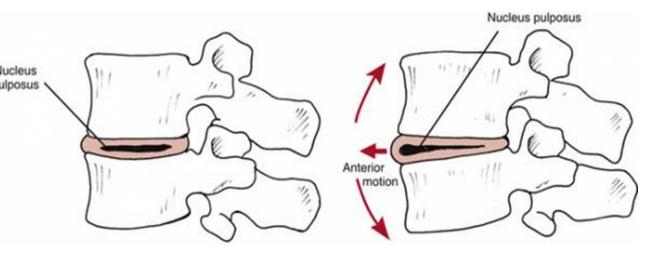
Dysfunction

- Mechanical deformation of impaired soft tissue
- Tissue contraction, scarring, adhesion, or adaptive shortening due to traumatic, inflammatory, or degenerative processes
- Loss of movement and pain at the end range
- Numerous subsyndromes: including flexion!
- Treatment: HEP & mobilization exercises focused in the direction of dysfunction/pain
- Treatment goal is tissue remodeling

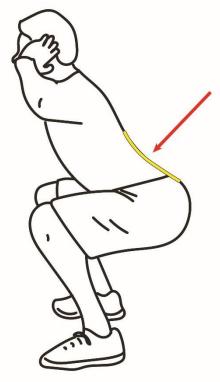
MDT Classifications

Derangement

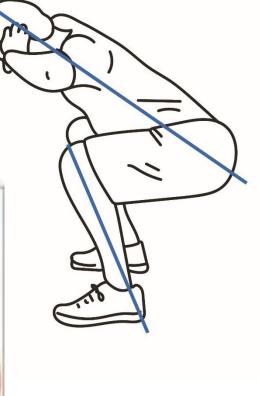
- Most common MDT classification: up to 78%
- Pain & loss of ROM in the direction of derangement
- Often discogenic
- Centralization and peripheralization are monitored
- Approximately 58% to 91% show centralization of pain
 - 67% to 85% prefer extension
- Numerous subsyndromes
- Treatment: repetitive movements in a single direction that reduces pain


Other

 Spinal stenosis, SIJ, hip disorders, zygapophyseal disorders, postsurgical complications, spondylolysis, spondylolisthesis, etc....


Extension Indicators

- Disc syndromes
- Hip flexor tightness
 - Iliopsoas complex
 - Anterior hip capsule restriction
- Anterior SI ligament dysfunction
- Flexion dominant movement LPHC



Extension
Indicators

Passive Extension

- Lengthens the anterior chain
- Promotes anterior migration of the nucleus pulposus
- Mobilizes the apophyseal joints
- Localized pain may be allowed
- Peripheralization is to be avoided

Stability & Strength w/ Extension

- Treat the entire posterior chain
- Hamstrings, glut max/med, LS extensors, QL
- End range loading
- Prone alternate reciprocal movement
 - Static hold activates multifidi and erector spinae

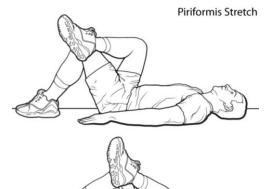
Stability and Strength w/ Extension

- Isometric hold with slow release
- Prone to seated
- Reactive isometrics seated

The Best? Moderate- to high-quality Evidence:

- MDT is not superior to other rehabilitation interventions for reducing pain and disability in acute LBP
- MDT is superior to other rehabilitation interventions for reducing pain and disability in chronic LBP
- Depends on the type of intervention being compared to MDT

J Orthop Sports Phys Ther 2018;48(6):476-490.


Williams? McKenzie? McGill?

Acute Low Back Patient

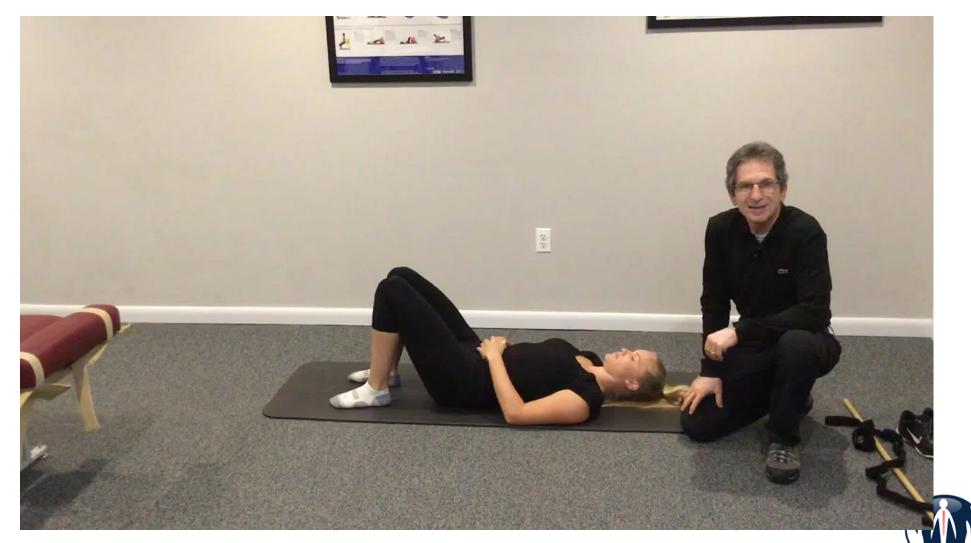
- Goal: maintain ROM and shut down inflammatory cascade
- Position of relief?
- Flexion
 - Williams
 - Bracing in flexion
- Extension
 - Prone press up to Cobra
- Walk ASAP
- Other:
 - Cat/Cow
 - Piriformis

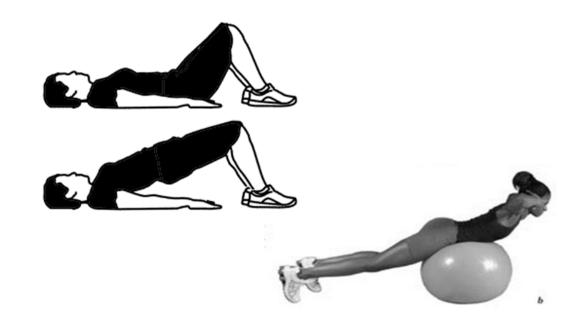
Low Back Stretches

- Knee to chest
- Figure "4"
- Hip Flexor
- Prone Extension
- Seated Hamstring

Helps maintain ROM

Excellent for the acute patient
Increases hip compliance





Sub-acute: Add stability

- Flexion:
 - Dead Bug progression
- **Extension:**
 - End range ext
 - Bridges
- Neutral:
 - McGill's Top-3
- Other
 - Bracing
 - Clamshells

Rehabilitative & RTP

Flexion

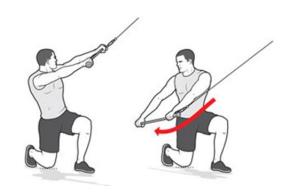
- Dead Bugs w/ biofeedback
- Gait retraining

Extension

- End Range loading
- Unstable surface
- RDL's: Good Morning's

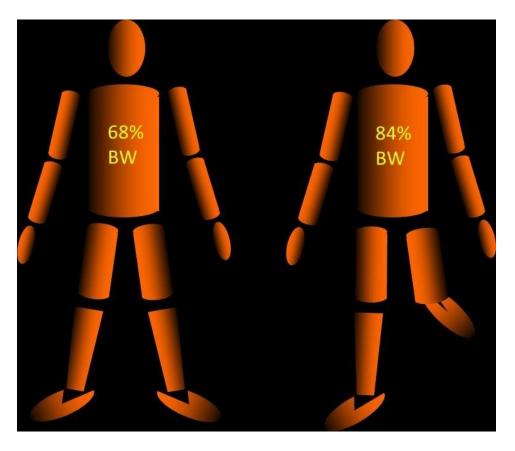
Neutral

- Unstable surface
- Chops
- Planks
- Plyo's


Other

- Physio ball
- Table top bridges
- Abdominal breathing

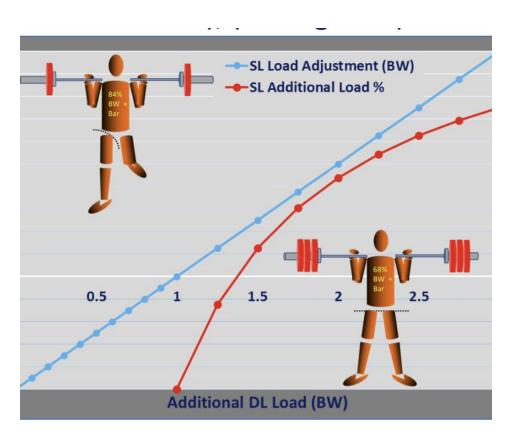
Dosing


Stretches

- Pain –free ROM
- Hold 30-60 seconds
- Breathe
- 3 reps
- 1-3X/day

Stabilization

- Pain-free ROM
- Tempo: 2:2:4
- Breathe
- 10-20 reps
- 3 sets
- 1-3X/day


Safely Increasing Load

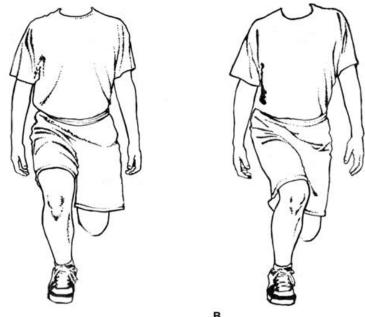
www.DeFabioDifference.com

Graham-Smith et al, UKSCA's 11th Annual Conference, August 2015 - Chesford Grange, Warwickshire

- Additional loads of less than one BW in a DL movement will not develop the same level of loading compared to a SL movement with no load
- An additional load of one BW applied to a SL movement is the equivalent to a DL movement with an additional load of 3 BW (1/3of DL add'l load)

Dynamic Assessment

- Thomas Test
 - Iliopsoas vs. Rectus Femoris vs. ITB



Dynamic Trendelenburg

- Gluteus Medius
- Acetabular/Knee/Ankle dysfunction

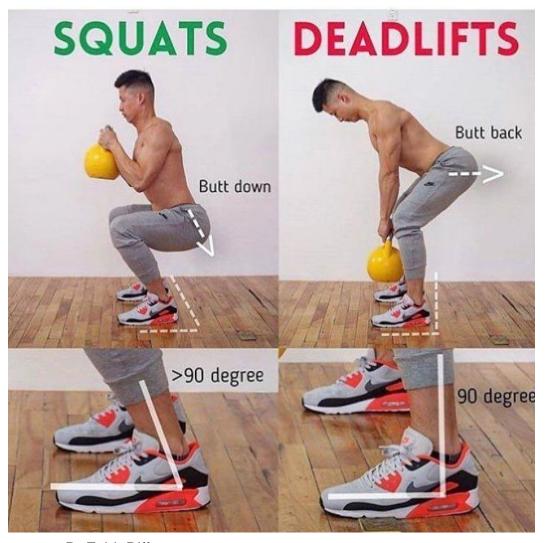
Squat Mechanics

Squat Patho-mechanics

- Torso Falls Forward
 - Tightness: Iliopsoas, Lats
 - Weakness: LS Erectors, Glut Max
- LS Flattens
 - Tightness: Hamstrings
 - Weakness: Hip Flexors, TA
- LS Arches
 - Tightness: Hip Flexors
 - Weakness: TA
- Pelvic Obliquity
 - Tight: Adductors: TFL (IPSI), Piriformis, Glut Med (Opp)
 - Weak: Glut Med, Piriformis, BF (IPSI):ADD, TFL (Opp)
 www.DeFabioDifference.com

Developing the Hip Hinge

- Kneeling Hip Hinge
- Sit to Stand
- Ball Squats
- RDL's



Hip Hinge vs. Hip Flexion

Kinesiology Tape

- Neurosensory stimulation
- Can address:
 - Muscle, fascia, functional movements
- No tension on taps
- Clean, dry skin
- Lengthen soft tissue involved
- Stretch @20-25%
 - Less is more!
- Heat increases adhesion

K- Tape

Additional Resources

- @NCMIC
- Don DeFabio, DC, DACBSP, DACRB, DABCO
 - Relevant Rehab Seminars
 - CCSP to Rehab Diplomate program
 - www.DeFabioDifference.com
 - One on One Consulting
- You Tube: Dr DeFabio

Thank You!

Donald C. DeFabio, DC, DACBSP, DACRB, DABCO

NCMIC

DeFabioChiropractic@gmail.com

908-771-0220

www.DeFabioDifference.com